V = 2000.34 (6) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.15 \times 0.05 \text{ mm}$

18600 measured reflections

4594 independent reflections 3837 reflections with $I > 2\sigma(I)$

 $\mu = 0.80 \text{ mm}^{-1}$

T = 100 (2) K

 $R_{\rm int} = 0.035$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{benzyl N'-[(1*H*-indol-3-yl)methylene]dithiocarbazato- $\kappa^2 N'$,S}copper(II) *N*,*N*-dimethylformamide disolvate

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 23 December 2008; accepted 23 December 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.081; data-to-parameter ratio = 17.9.

In the structure of $[Cu(C_{17}H_{14}N_3S_2)_2]\cdot 2C_3H_7NO$, the Cu atom (site symmetry $\overline{1}$) is *N*,*S*-chelated by the two deprotonated Schiff-base anions that define a distorted square-planar geometry. An N-H···O hydrogen bond links the mononuclear complex to the DMF solvent molecules.

Related literature

For the Schiff base ligand, see: Khaledi *et al.* (2008*b*). For the isostructural nickel analog, see: Khaledi *et al.* (2008*a*).

2(CH₃)₂NCHO

Experimental

Crystal data

 $[Cu(C_{17}H_{14}N_3S_2)_2] \cdot 2C_3H_7NO$ $M_r = 858.60$ Monoclinic, $P2_1/c$ a = 10.4461 (2) Å b = 20.0882 (3) Å c = 10.8333 (2) Å $\beta = 118.366$ (1)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.825, T_{max} = 0.961$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.081$	independent and constrained
S = 1.04	refinement
1594 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
256 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3N···O1	0.88 (2)	1.87 (2)	2.742 (2)	175 (2)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya for funding this study (Science Fund grants 12–02-03–2031 and 12–02-03–2051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2349).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008a). Acta Cryst. E64, m1615. Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008b). Acta Cryst. E64, o2107.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, m139 [doi:10.1107/S1600536808043808]

$Bis\{benzyl N'-[(1H-indol-3-yl)methylene] dithiocarbazato-\kappa^2 N', S\} copper (II) N, N-dimethylformamide disolvate$

H. Khaledi, H. Mohd Ali and S. W. Ng

Comment

(type here to add)

Experimental

Benzyl (1*H*-indol-2-ylmethylene)hydrazinecarbodithioate (Khaledi *et al.*, 2008*b*) (1 mmol, 0.33 g) was dissolved in ethanol (30 ml). To the clear solution was added an ethanol solution (10 ml) containing 1 mmol (0.09 g) of copper chloride dihydrate. The mixture was heated for an hour. The product that separated was recrystallized from DMF.

Refinement

The C-bound H atoms were placed at calculated positions (C–H 0.95–0.99 Å) and were treated as riding on their parent C atoms, with U(H) set to 1.2–1.5 times $U_{eq}(C)$. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Cu(C_{17}H_{14}N_3)$ 2DMF at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Bis{benzyl N'-[(1*H*-indol-3-yl)methylene]dithiocarbazato- $\kappa^2 N'$,S}copper(II) N,N-dimethylformamide disolvate

Crystal data	
$[Cu(C_{17}H_{14}N_3S_2)_2] \cdot 2C_3H_7NO$	Z = 2
$M_r = 858.60$	$F_{000} = 894$
Monoclinic, $P2_1/c$	$D_{\rm x} = 1.425 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 10.4461 (2) Å	$\mu = 0.80 \text{ mm}^{-1}$
b = 20.0882 (3) Å	T = 100 (2) K
c = 10.8333 (2) Å	Irregular block, brown
$\beta = 118.366 \ (1)^{\circ}$	$0.25\times0.15\times0.05~mm$
V = 2000.34 (6) Å ³	

Data collection

Bruker SMART APEX diffractometer	4594 independent reflections
Radiation source: fine-focus sealed tube	3837 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.825, T_{\max} = 0.961$	$k = -25 \rightarrow 26$
18600 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.0382P)^2 + 0.7321P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
4594 reflections	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
256 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	Uiso*/Ueq
Cu1	0.5000	0.5000	0.5000	0.01678 (8)
O1	0.8350 (2)	0.56467 (8)	-0.10421 (17)	0.0526 (5)
S1	0.51561 (5)	0.61250 (2)	0.51610 (5)	0.02414 (11)
S2	0.61468 (5)	0.70543 (2)	0.37409 (5)	0.02345 (11)
N1	0.60380 (15)	0.57545 (7)	0.32793 (14)	0.0191 (3)
N2	0.56823 (15)	0.51211 (7)	0.35752 (15)	0.0193 (3)
N3	0.72111 (17)	0.49444 (7)	0.03797 (16)	0.0234 (3)
H3N	0.756 (3)	0.5192 (11)	-0.006 (2)	0.040 (6)*
N4	0.91692 (17)	0.57480 (8)	-0.26314 (16)	0.0267 (3)
C1	0.81749 (19)	0.68443 (8)	0.27140 (19)	0.0223 (4)
C2	0.9316 (2)	0.68264 (9)	0.4074 (2)	0.0282 (4)
H2	0.9149	0.6937	0.4838	0.034*
C3	1.0699 (2)	0.66472 (10)	0.4321 (2)	0.0338 (4)
Н3	1.1469	0.6628	0.5258	0.041*
C4	1.0974 (2)	0.64964 (10)	0.3226 (2)	0.0340 (5)
H4	1.1926	0.6376	0.3406	0.041*

C5	0.9852 (2)	0.65223 (10)	0.1870 (2)	0.0315 (4)
Н5	1.0030	0.6423	0.1108	0.038*
C6	0.8463 (2)	0.66931 (9)	0.1618 (2)	0.0261 (4)
H6	0.7695	0.6707	0.0680	0.031*
C7	0.6635 (2)	0.70369 (9)	0.23471 (19)	0.0245 (4)
H7A	0.5968	0.6724	0.1620	0.029*
H7B	0.6446	0.7485	0.1915	0.029*
C8	0.58034 (17)	0.62208 (8)	0.39595 (17)	0.0188 (3)
C9	0.58804 (18)	0.46384 (8)	0.28764 (18)	0.0204 (3)
Н9	0.5641	0.4209	0.3071	0.024*
C10	0.63940 (18)	0.46470 (8)	0.18750 (17)	0.0201 (3)
C11	0.68033 (19)	0.51762 (9)	0.13067 (19)	0.0229 (4)
H11	0.6796	0.5632	0.1538	0.027*
C12	0.65845 (18)	0.40510 (8)	0.12243 (17)	0.0196 (3)
C13	0.63965 (19)	0.33709 (9)	0.13551 (18)	0.0234 (4)
H13	0.6062	0.3216	0.1980	0.028*
C14	0.6707 (2)	0.29284 (9)	0.0556 (2)	0.0276 (4)
H14	0.6595	0.2464	0.0645	0.033*
C15	0.7185 (2)	0.31520 (9)	-0.0383 (2)	0.0285 (4)
H15	0.7380	0.2837	-0.0926	0.034*
C16	0.73753 (19)	0.38186 (9)	-0.05314 (18)	0.0250 (4)
H16	0.7690	0.3972	-0.1173	0.030*
C17	0.70879 (18)	0.42596 (9)	0.02967 (18)	0.0211 (3)
C18	0.8710 (3)	0.54041 (11)	-0.1878 (2)	0.0395 (5)
H18	0.8652	0.4934	-0.1989	0.047*
C19	0.9269 (2)	0.64686 (9)	-0.2527 (2)	0.0294 (4)
H19A	0.9223	0.6613	-0.1685	0.044*
H19B	0.8460	0.6666	-0.3358	0.044*
H19C	1.0193	0.6613	-0.2467	0.044*
C20	0.9516 (2)	0.54244 (10)	-0.3636 (2)	0.0314 (4)
H20A	0.9441	0.4941	-0.3573	0.047*
H20B	1.0510	0.5541	-0.3427	0.047*
H20C	0.8832	0.5573	-0.4587	0.047*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01726 (15)	0.01781 (15)	0.01939 (15)	0.00000 (11)	0.01205 (12)	0.00001 (11)
O1	0.0872 (13)	0.0476 (10)	0.0468 (9)	-0.0192 (9)	0.0511 (10)	-0.0044 (7)
S1	0.0345 (3)	0.0189 (2)	0.0316 (2)	-0.00003 (17)	0.0260 (2)	-0.00067 (17)
S2	0.0308 (2)	0.0175 (2)	0.0305 (2)	0.00151 (17)	0.0214 (2)	0.00143 (17)
N1	0.0217 (7)	0.0178 (7)	0.0208 (7)	-0.0002 (5)	0.0126 (6)	0.0020 (6)
N2	0.0222 (7)	0.0179 (7)	0.0214 (7)	-0.0007 (5)	0.0134 (6)	0.0007 (5)
N3	0.0284 (8)	0.0236 (8)	0.0266 (8)	0.0016 (6)	0.0198 (7)	0.0027 (6)
N4	0.0282 (8)	0.0283 (8)	0.0251 (8)	-0.0006 (6)	0.0138 (7)	0.0045 (6)
C1	0.0268 (9)	0.0148 (8)	0.0302 (9)	-0.0002 (7)	0.0175 (8)	0.0050 (7)
C2	0.0309 (10)	0.0290 (10)	0.0281 (9)	-0.0024 (8)	0.0168 (8)	0.0022 (8)
C3	0.0247 (10)	0.0349 (11)	0.0346 (11)	-0.0042 (8)	0.0082 (9)	0.0018 (9)

supplementary materials

C4	0.0256 (10)	0.0290 (10)	0.0506 (13)	-0.0022 (8)	0.0207 (10)	-0.0036 (9)
C5	0.0329 (11)	0.0303 (10)	0.0405 (11)	-0.0016 (8)	0.0249 (10)	-0.0031 (8)
C6	0.0285 (9)	0.0252 (9)	0.0290 (9)	-0.0006 (7)	0.0172 (8)	0.0027 (7)
C7	0.0291 (9)	0.0236 (9)	0.0274 (9)	0.0054 (7)	0.0187 (8)	0.0081 (7)
C8	0.0158 (8)	0.0215 (8)	0.0196 (8)	0.0016 (6)	0.0090 (7)	0.0025 (6)
C9	0.0223 (9)	0.0182 (8)	0.0240 (9)	-0.0011 (6)	0.0137 (7)	-0.0003 (7)
C10	0.0214 (8)	0.0197 (8)	0.0212 (8)	-0.0004 (6)	0.0118 (7)	-0.0010(7)
C11	0.0262 (9)	0.0219 (8)	0.0272 (9)	0.0022 (7)	0.0182 (8)	0.0003 (7)
C12	0.0178 (8)	0.0226 (8)	0.0197 (8)	0.0000 (6)	0.0100 (7)	-0.0026(7)
C13	0.0223 (9)	0.0239 (9)	0.0259 (9)	-0.0034 (7)	0.0129 (8)	-0.0027(7)
C14	0.0238 (9)	0.0227 (9)	0.0355 (10)	-0.0022 (7)	0.0135 (8)	-0.0060 (8)
C15	0.0254 (9)	0.0303 (10)	0.0310 (10)	0.0022 (8)	0.0143 (8)	-0.0098 (8)
C16	0.0223 (9)	0.0340 (10)	0.0220 (9)	0.0023 (7)	0.0131 (8)	-0.0034 (7)
C17	0.0192 (8)	0.0237 (9)	0.0210 (8)	0.0025 (7)	0.0101 (7)	-0.0001 (7)
C18	0.0543 (14)	0.0337 (11)	0.0362 (11)	-0.0107 (10)	0.0262 (11)	0.0016 (9)
C19	0.0338 (11)	0.0283 (10)	0.0271 (10)	-0.0031 (8)	0.0154 (9)	0.0030 (8)
C20	0.0308 (10)	0.0354 (11)	0.0312 (10)	0.0037 (8)	0.0173 (9)	0.0028 (8)

Geometric parameters (Å, °)

Cu1—N2	1.9987 (14)	С5—Н5	0.9500
Cu1—N2 ⁱ	1.9987 (14)	С6—Н6	0.9500
Cu1—S1	2.2666 (4)	С7—Н7А	0.9900
Cu1—S1 ⁱ	2.2666 (4)	С7—Н7В	0.9900
O1—C18	1.234 (3)	C9—C10	1.421 (2)
S1—C8	1.7392 (17)	С9—Н9	0.9500
S2—C8	1.7519 (17)	C10—C11	1.394 (2)
S2—C7	1.8092 (17)	C10—C12	1.450 (2)
N1—C8	1.285 (2)	C11—H11	0.9500
N1—N2	1.4048 (18)	C12—C17	1.401 (2)
N2—C9	1.306 (2)	C12—C13	1.397 (2)
N3—C11	1.347 (2)	C13—C14	1.382 (2)
N3—C17	1.381 (2)	C13—H13	0.9500
N3—H3N	0.88 (2)	C14—C15	1.403 (3)
N4—C18	1.321 (2)	C14—H14	0.9500
N4—C19	1.452 (2)	C15—C16	1.374 (3)
N4—C20	1.454 (2)	C15—H15	0.9500
C1—C6	1.390 (2)	C16—C17	1.391 (2)
C1—C2	1.387 (3)	C16—H16	0.9500
C1—C7	1.512 (2)	C18—H18	0.9500
C2—C3	1.386 (3)	C19—H19A	0.9800
С2—Н2	0.9500	C19—H19B	0.9800
C3—C4	1.380 (3)	C19—H19C	0.9800
С3—Н3	0.9500	C20—H20A	0.9800
C4—C5	1.378 (3)	C20—H20B	0.9800
C4—H4	0.9500	C20—H20C	0.9800
C5—C6	1.386 (3)		
N2—Cu1—N2 ⁱ	180.000 (1)	S1—C8—S2	112.60 (9)

N2—Cu1—S1	84.21 (4)	N2—C9—C10	130.93 (16)
N2 ⁱ —Cu1—S1	95.79 (4)	N2—C9—H9	114.5
N2—Cu1—S1 ⁱ	95.79 (4)	С10—С9—Н9	114.5
N2 ⁱ —Cu1—S1 ⁱ	84.21 (4)	C11—C10—C9	130.77 (16)
S1—Cu1—S1 ⁱ	180.0	C11—C10—C12	105.86 (15)
C8—S1—Cu1	95.28 (6)	C9—C10—C12	123.36 (15)
C8—S2—C7	104.55 (8)	N3—C11—C10	109.74 (15)
C8—N1—N2	112.72 (13)	N3—C11—H11	125.1
C9—N2—N1	114.11 (14)	C10—C11—H11	125.1
C9—N2—Cu1	124.77 (12)	C17—C12—C13	118.93 (15)
N1—N2—Cu1	121.10 (10)	C17—C12—C10	106.66 (15)
C11—N3—C17	109.91 (15)	C13—C12—C10	134.40 (16)
C11—N3—H3N	124.5 (15)	C14—C13—C12	118.64 (16)
C17—N3—H3N	125.5 (15)	C14—C13—H13	120.7
C18—N4—C19	120.47 (17)	С12—С13—Н13	120.7
C18—N4—C20	121.44 (17)	C13—C14—C15	121.20 (17)
C19—N4—C20	118.02 (15)	C13—C14—H14	119.4
C6—C1—C2	118.43 (17)	C15—C14—H14	119.4
C6—C1—C7	117.81 (16)	C16—C15—C14	121.23 (17)
C2—C1—C7	123.75 (16)	С16—С15—Н15	119.4
C3—C2—C1	120.16 (18)	C14—C15—H15	119.4
С3—С2—Н2	119.9	C15—C16—C17	117.19 (17)
C1—C2—H2	119.9	С15—С16—Н16	121.4
C4—C3—C2	120.95 (18)	C17—C16—H16	121.4
С4—С3—Н3	119.5	N3—C17—C16	129.38 (16)
С2—С3—Н3	119.5	N3—C17—C12	107.84 (14)
C3—C4—C5	119.34 (18)	C16—C17—C12	122.79 (16)
C3—C4—H4	120.3	O1C18N4	125.0 (2)
С5—С4—Н4	120.3	O1-C18-H18	117.5
C4—C5—C6	119.94 (18)	N4—C18—H18	117.5
С4—С5—Н5	120.0	N4—C19—H19A	109.5
С6—С5—Н5	120.0	N4—C19—H19B	109.5
C5—C6—C1	121.17 (18)	H19A—C19—H19B	109.5
С5—С6—Н6	119.4	N4—C19—H19C	109.5
С1—С6—Н6	119.4	H19A—C19—H19C	109.5
C1—C7—S2	118.16 (12)	H19B—C19—H19C	109.5
С1—С7—Н7А	107.8	N4—C20—H20A	109.5
S2—C7—H7A	107.8	N4—C20—H20B	109.5
C1—C7—H7B	107.8	H20A—C20—H20B	109.5
S2—C7—H7B	107.8	N4—C20—H20C	109.5
H7A—C7—H7B	107.1	H20A-C20-H20C	109.5
N1—C8—S1	126.61 (13)	H20B—C20—H20C	109.5
N1—C8—S2	120.80 (13)		
N2—Cu1—S1—C8	-1.75 (7)	Cu1—N2—C9—C10	-177.95 (14)
N2 ⁱ —Cu1—S1—C8	178.25 (7)	N2-C9-C10-C11	-2.0 (3)
C8—N1—N2—C9	178.63 (15)	N2-C9-C10-C12	178.22 (17)
C8—N1—N2—Cu1	-3.25 (19)	C17—N3—C11—C10	0.1 (2)
S1—Cu1—N2—C9	-179.02 (14)	C9—C10—C11—N3	-179.57 (17)

supplementary materials

S1 ⁱ —Cu1—N2—C9	0.98 (14)	C12—C10—C11—N3	0.2 (2)
S1—Cu1—N2—N1	3.07 (11)	C11—C10—C12—C17	-0.39 (19)
S1 ⁱ —Cu1—N2—N1	-176.93 (11)	C9—C10—C12—C17	179.40 (15)
C6—C1—C2—C3	-1.4 (3)	C11-C10-C12-C13	178.57 (19)
C7—C1—C2—C3	-179.70 (17)	C9—C10—C12—C13	-1.6 (3)
C1—C2—C3—C4	1.2 (3)	C17—C12—C13—C14	-0.4 (2)
C2—C3—C4—C5	-0.3 (3)	C10-C12-C13-C14	-179.23 (18)
C3—C4—C5—C6	-0.5 (3)	C12-C13-C14-C15	-0.8 (3)
C4—C5—C6—C1	0.4 (3)	C13-C14-C15-C16	0.7 (3)
C2-C1-C6-C5	0.6 (3)	C14-C15-C16-C17	0.6 (3)
C7—C1—C6—C5	179.01 (16)	C11—N3—C17—C16	179.22 (18)
C6—C1—C7—S2	166.51 (13)	C11—N3—C17—C12	-0.3 (2)
C2C1C7S2	-15.1 (2)	C15-C16-C17-N3	178.73 (17)
C8—S2—C7—C1	-80.69 (15)	C15—C16—C17—C12	-1.8 (3)
N2—N1—C8—S1	1.3 (2)	C13-C12-C17-N3	-178.72 (15)
N2—N1—C8—S2	-179.21 (11)	C10-C12-C17-N3	0.43 (18)
Cu1—S1—C8—N1	0.81 (16)	C13—C12—C17—C16	1.7 (3)
Cu1—S1—C8—S2	-178.73 (8)	C10-C12-C17-C16	-179.15 (16)
C7—S2—C8—N1	5.62 (16)	C19—N4—C18—O1	-0.7 (3)
C7—S2—C8—S1	-174.81 (9)	C20-N4-C18-O1	-177.5 (2)
N1—N2—C9—C10	0.1 (3)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H3N…O1	0.88 (2)	1.87 (2)	2.742 (2)	175 (2)

Fig. 1